The Role of Oxygen Radicals in Reducing Cerebral Edema Caused by Normobaric Hyperoxia Pretreatment in Rat Model of Stroke

نویسندگان

  • Mahdieh Asheghabadi
  • Mohammad Reza Bigdeli
چکیده

Article history: Received: 23 Apr 2011 Accepted: 26 Feb 2012 Available online: 18 Nov 2012 ZJRMS 2013; 15(5): 1-5 Background: Recent studies have shown that normobaric hyperoxia compared with normobaric normoxia can reduce the damages resulting from the stroke. The purpose of this study is to investigate the effects of oxygen radicals in reduction of cerebral edema caused by normobaric hyperoxia in rat stroke models. Materials and Methods: Wistar rats were divided into two main experimental groups and were exposed to 90% oxygen (HO) for 4 hours/day during 6 days; the main control group was placed inside a special chamber and exposed to room 21% oxygen at 1 atmosphere pressure (RA). Then, each group was divided into three subgroups half an hour before placing and treatment in the oxygen chamber, the first, second and third subgroups of both groups were received no substance (RA and HO), saline (RA-S and HO-S), and dimethylthiourea (RA-MT and HO-MT), respectively in order to evaluate the role of oxygen radicals. Then after 24 hours, they were exposed to ischemia through surgically occlusion of middle cerebral artery in order to create brain edema After 60 minutes of ischemia, the perfusion was reestablished for 24 hours. Then the neurological deficit scores and cerebral edema were analyzed. Results: Based on Mann–Whitney U test, the median of recovery effect of neurological deficit was significant (p<0.05). The extent of cerebral edema, based on one-way ANOVA test, was also significant (p<0.05). This effect disappeared largely by consumption of dimethylthiourea. Conclusion: The reduction of cerebral edema resulting from normobaric hyperoxia treatment is largely mediated through oxygen radicals. Copyright © 2013 Zahedan University of Medical Sciences All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of UCP2 expression in the phenomenon of ischemic resistance induced by alternating normobaric hyperoxia in a rat model of stroke

Introduction: ischemic preconditioning is one of the most important mechanisms, responsible for the increased brain resistance after stroke. One of the most important candidates to ischemia preconditioning is intermittent normobaric hyperoxia. In this study, the effect of intermittent normobaric hyperoxia on the expression of UCP2 was investigated in a stroke model. Methods: Rats were divid...

متن کامل

Effects of preconditioning with intermittent normobaric hyperoxia on TNFR1 and TNFR2 expression in the rat brain

Introduction: Recent studies have shown that intermittent normobaric hyperoxia (HO) protects the rat brain from ischemia reperfusion injury. However, the exact mechanism of this kind of protection in vivo is not known. In this study, the effect of HO on expression of TNFR1 and TNFR2 in a stroke model was investigated.&nbsp;Methods: In this experimental study, rats were divided into 4 groups: no...

متن کامل

.Neuroprotection induced by Preconditioning with Prolonged and Intermittent Normobaric Hyperoxia Induce Catalase Activity in the rat stroke model

Introduction: Ischemic preconditioning (IPC) is an endogenous phenomenon that can induce ischemic tolerance (IT) in variety of organs such as brain. In this study, we examined the intermittent and prolonged dose of normobaric hyperoxia (HO) on neurologic deficit scores, infarct volume, and catalase activity. Material and Method: The rats were divided to four main groups. First two main groups w...

متن کامل

Time course of neuroprotection induced by in vivo normobaric hyperoxia preconditioning and angiogenesis factors

Objective(s):Every year, a large number of people lose their lives due to stroke. Stroke is the second leading cause of death worldwide. Surprisingly, recent studies have shown that preconditioning with hyperoxia (HO) increases tissue tolerance to ischemia, ultimately reducing damages caused by stroke. Addressed in this study are beneficial contributions from HO preconditioning into reduced har...

متن کامل

بررسی آستانه ایجاد تحمل به ایسکمی مغزی به واسطه هیپرکسی نورموباریک در مدل موش صحرایی سکته مغزی

Background: Recent studies suggest that normobaric hyperoxia (HO) results in ischemic tolerance to reduce ischemia brain injury. In this research, attempts were made to assess threshold of ischemic tolerance induced by normobaric hyperoxia in rat stroke model. Materials and methods: Rats were divided into two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013